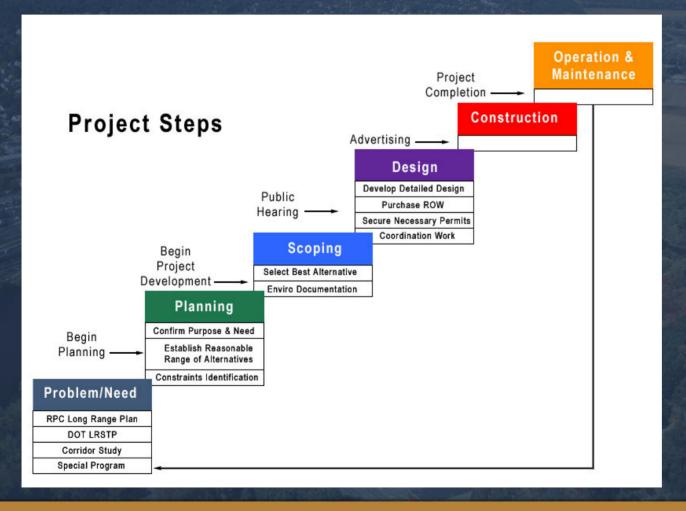


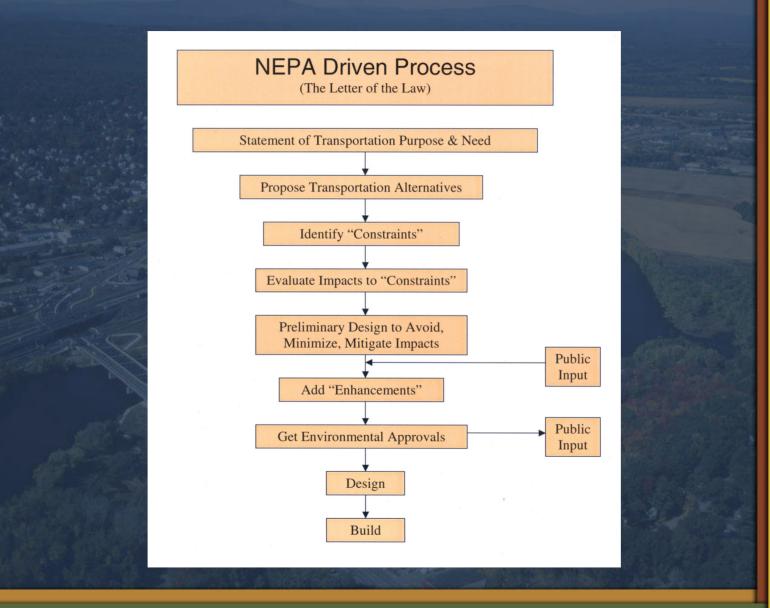
Agenda

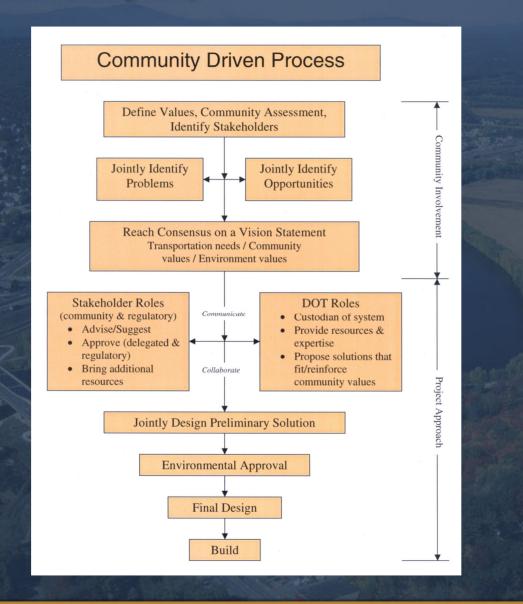
- 1. Introductions/Committee Overview
- 2. Selection of Chairperson
- 3. Project Overview & History
- 4. Project Development Process
- 5. Study Methodology
- 6. Public Participation Process Overview
- 7. Proposed Project Schedule
- 8. Discussion
- 9. Public Comments
- 10. Next Meeting

Project Overview/History


1992 I-93 Feasibility Study

Exit 13 Improvements


2020 Vision for Concord


Project Development Process

Project Team

CATF

Town of Bow
City of Concord
Town of Pembroke
Concord 2020
Central NH Regional
Planning Commission

NHDOT

Transportation Planning

Owner

Don Lyford-Project Manager
Ansel Sanborn- Administrator

Technical Review Committee

NHDOT
Town of Bow
City of Concord
Town of Pembroke
Central NH Regional Planning
FHWA
Resource Agencies

McFarland-Johnson, Inc.

Rick Woidt, PE-Public Participation
Gene McCarthy, PE-Engineering/System Planning
Jed Merrow, Environmental

Transystems

John Reed Railroad Considerations

RSG

Steve Lawe Transportation Modeling

Saucier & Flynn

Bill Flynn
Design Visualizations
& Perspectives

AER

Russ Tibeault Economic Considerations

Transportation Considerations

I-93 Widen to Six Lanes

1-93 Westward Alignment Shift

Grade Reversal of Exit 14

Reconfiguration of Exits 14 & 15

Possible Connection from I-89 to 106

Exit 2 1/2 on I-393

Exit 16 1/2 on I-93

Exit South of I-89

Commuter Rail Preservation

Pedestrian & Bicycle Access

Merrimack River Access

Visual Aesthetics

Study Methodology

Engineering/System Planning

Data Collection/Base Plans

Transportation Modeling

Traffic Analysis

Alternatives Development

Transportation Modeling

Updated CNHRPC Transportation Model Expand the model geographic boundaries 12 Towns 240 TAZ's (214 internal & 26 external) Add year 2000 data Housing data from 2000 census Employment data from State of NH Updated roadway network from CNHRPC Vehicle count data for year 2000 calibration Converted from vehicle to person based Estimate person trips rather than vehicle trips Use a mode split module to estimate transit & vehicles

Transportation Modeling

Model Process

Estimate trip characteristics using:

Census journey to work data

Available trip diary survey data

NH statewide stated preference & household survey

Calibrate model and calculate accuracy

Compare vehicle results to count data

FHWA standards (0.88 correlation coefficient)

Transportation Modeling

Model Overview:

Base model is 3rd Friday in July, 2000 AM, PM, Off-Peak hours of analysis Auto, Shared Ride, Bus, Rail, Walk/Bike

Model Definition: 4-step approach

Step 1: Person Trip Generation

Step 2: Person Distribution

Step 3: Mode Choice

Step 4: Vehicle Assignment

Transportation Modeling

Model Operation – What To Expect

Example: auto volumes on a road increased due to a major roadway investment. WHY?

Did land use change? (land use)

Was there induced demand – released suppressed demand (trip generation)

Did people change their trip ends – go somewhere different (trip distribution)

Did they use more automobiles (mode choice)

Did people change their routing changes (assignment)

Transportation Modeling

Model Operation – What To Expect

Primary, secondary, tertiary impacts
Increased congestion may cause route changes
Decreased congestion may increase trip lengths

Importance of policy decision making
What is our goal?
How should we use these interesting dynamics to meet our goal?

Transportation Modeling

Using the Model for the Bow-to-Concord Study

Establish a baseline condition (year 2000)

Define purpose and need

Develop a set of scenarios. For each scenario:

What land use impacts will result

Code and run the transportation scenario

Extract the roadway and intersection results

Account for model error (base model vs count)

Perform LOS and other analyses

Transportation Modeling

Using the Model for the Bow-to-Concord Study

The transportation model is a tool

Test scenarios

Spend time to ensure that results are understood

Retain a high level of thought-to-run ratio

Make sure the assumptions are clearly stated

Inform "mental model"

We have a notion of how travel patterns work Inform and alter your mental model

Gain a group understanding of system

Learning from the model and others participating

Study Methodology

Traffic Analysis

I-93

Ramps

Weaving Sections

Traffic Needs Study

Study Methodology

Environmental

Data Collection

Resource Identification

Agency Coordination

Potential Resource Impacts

Screening of Alternatives

Study Methodology

Phase A Completion & Documentation

Purpose and Need Statement

Range of Reasonable Alternatives

Summary/Classification Report

Public Participation Process

Citizen's Advisory Task Force (6)

Technical Review Committee

Community Meetings/Forums

Project Newsletter

Project Website

Project Design Center

Public Participation Process

Collaborative Public Participation

City of Concord Master Plan

Town of Bow Master Plan

Town of Pembroke Master Plan

City of Concord Opportunity Corridor

Master Plan Process Goals

Ensure community buy-in on Master Plan through meaningful public participation in the planning process

Provide opportunities for participation in which the public can easily see how input will be incorporated into the Master Plan

Integrate Master Plan process with other current planning efforts (e.g., I-93)

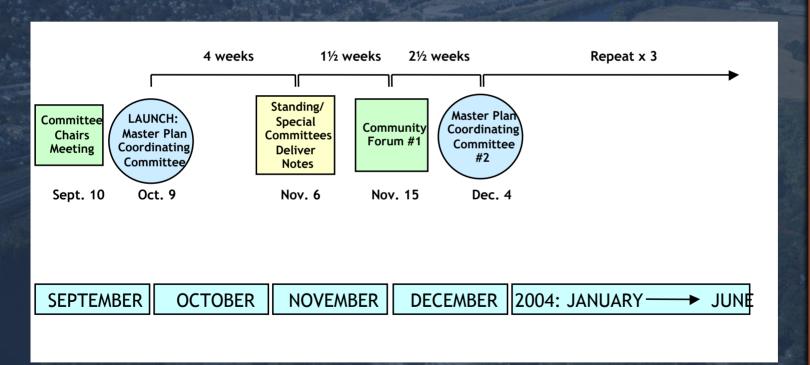
City of Concord Master Plan
Town of Bow Master Plan
Town of Pembroke Master Plan
City of Concord Opportunity Corridor

Project Approach & Design

Standing and Special Committees

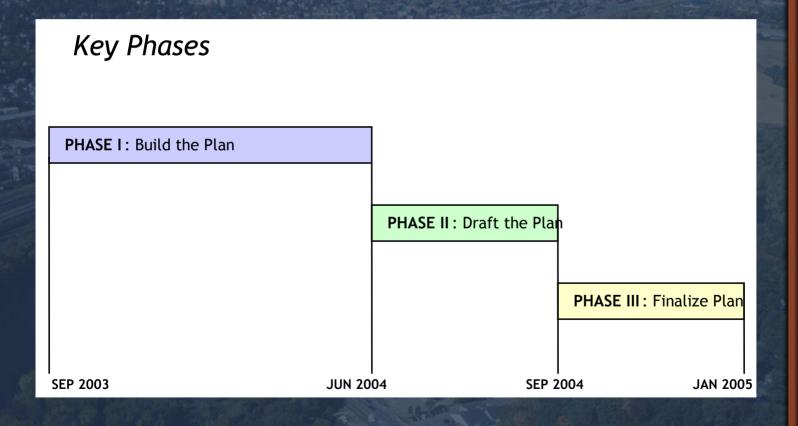
5 existing committees + 2 special committees
Asked to complete specific tasks with modest deliverables

Master Plan Coordinating Committee


All members of Standing and Special Committees "Backbone" of the planning process Strategies and ideas coordinated and conflicts resolved

Community Forums

Informal "tradeshow" event Community members are able to view the work of the committees, share ideas and provide feedback



Project Approach & Design

Project Approach & Design

Proposed Project Schedule

Notice To Proceed

Data Collection

Base Plans

Base Year 2000 Traffic Model

Design Year 2030 Traffic Model

Alternatives Development

Traffic Needs Study

Summary/Classification Report

February 2003

Spring 2003

Spring/Summer 2003

Spring/Summer 2003

Fall/Winter 2003/2004

Winter/Spring 2003/2004

Spring/Summer 2004

Fall 2004